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S U S P E N S I O N S  

Pseudoturbulent motions of phases are  considered as well as the internal s t ruc ture  of mono- 
dispersional  locally uniform suspension of par t ic les  in a liquid when the derivatives of the 
dynamic var iables  which descr ibe  the mean flow of the suspension are ignored. One assumes 
that the number of coll ision dissipations, which expresses  the rat io of the dissipation force 
due to accelera t ion of the fluid phase in the case of stepwise change in the velocit ies of the 
colliding par t ic les  to the forces  of viscous interaction~is small .  Dynamic equations which de- 
termine the motion of the suspension in its continuous approximation and the balance equation 
of the pseudoturbulent energy of the par t ic les  are obtained with an approximation which is 
s imi la r  to the Euler  approximation in the hydrodynamics of a s ingle-phase medium. 

1. Spectral Measures  of Pseudoturbulent Random Proces ses .  In [1] the stochastic equations were 
obtained for the pseudoturbulent pulsations of the volume concentration of the suspension pr, the p re s su re  
p' ,  veloci t ies  of the fluid v ' and the pa r t i c l ew ' ,  and the result ing algebraic equations for spectral  measures  
of the random functions. It is our aim to obtain a complete sys tem of equations which determine the mean 
motion of the suspension in the "Euler approximation," that is, with an accuracy  up to the t e rms  of zero  
o rder  as regards  the rat io of the sca les  of pseudoturbulence to the corresponding scales  of the mean motion. 
To this end, the equations for  the spectra l  measures  are  written neglecting the derivatives of the dynamic 
var iables :  

(co -I- u k )  d Z p  - -  ( t  - -  p) kdZ~, = 0 

idl (t --  p)(c0 ~- uk) dZ~ =- --  i (i~-- p) kdZp - -  goS (k~dZ~ -~ l/a k (kdZr 

- -  dip [~K -b i~co -F T~l (1 ~- i sign co) ~ ]  (dZo -- dZ~) --  d~p~K'udZ~ 

id2~odZ~, = - -  ikdZp A- dl [~g -~ i~0 ~- T~l (1 ~- i sign co) ]fl[~'~] (dZo -- dZ~) 
dl~g'udZtt --  d~dZ=, K '  ~ dK ] dp (1.1) 

O,,o o / ,,o lv, ~ N [ f ,, lvq 
= 7 '  T = ~F~ t-if-/ ' ~ = -T  ~ -  ~ § 4~q ~ - )  j 

The notation used in [1, 2] was adopted, though the symbol ( ) in the notation for dynamic var iables  
was omitted. In (1.1) a representa t ion was employed for the interphase interaction force which is valid for 
R~ 1,where R= 2au/v 0 is the Reynolds number.  Moreover,  it is assumed below that the flow is locally uni- 
form in the sense that in it large par t ic le  aggregates  are not formed,  or cavities filled by the dispersion 
medium, etc. 

Dimensionless var iables  are  now introduced as in [2] by using the formulas  

dZ~" dzv dZw dZw dZp 0)" ~ -  a{O = --u--' u ' dZp" dlhKua u k~= ak (1,2) 
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The fol lowing d i m e n s i o n l e s s  equat ions  a r e  obta ined  f r o m  (1.1) and (1.2) a f te r  t r a n s f o r m a t i o n s :  

((0' q- u0k')dZp - -  ( t  - -  p )k 'dZ~ '  = 0 (1.3) 

r_._ o)'dZw' = - -  i k 'dZ  v' q- t q- ~r~o)' q- V2"~ 

�9 d In K ,,~ 
• (dZv' --  dZw') -4- T uoaLp --  ~ d Z j  

p (~ + o)' q- :r dZ,~" q- [ir (1 - -  p) ((o' q- uok') q- sk '~] dZ," = - -  ik'dZv" - -  1Is sk" (k'dZo') 

dl u 2 S R 2 ua _. .  
~='~-~'  u ~  S = T - R - '  r=~-~=-~R--~o~l '  ~=~-R 

F o r  o :=  0 Eqs.  (1.3) r educe  to those  given in [2]. 

The p a r a m e t e r  ~ in (1.3) c h a r a c t e r i z e s  the ra t io  of d i s s ipa t ive  f o r c e s  due to a c c e l e r a t i o n  of the addi-  
t ional  f luid m a s s e s  in the c a s e  of s t epwise  changes  in the p a r t i c l e  ve loc i t i e s  at the t ime  of the co l l i s ions  
to the fo rce  of v i s c ous  i n t e r a c t i on  be tween  the phase s  of the suspens ion  [1]. If  the concen t r a t i on  p of the 
suspens ion  is  not  too c lose  to the concen t r a t i on  p ,  of the l a y e r  of p a r t i c l e s  in a dense ly  packed  s ta te ,  one 
can c o n s i d e r  the " n u m b e r  of co l l i s ion  d i s s ipa t ions"  r as  sma l l  (see the d i s c u s s i o n  in [2]). Below the s u s -  
pens ion  is  c o n s i d e r e d  only when d i r ec t  p a r t i c l e  co l l i s ions  a r e  d i s r e g a r d e d ,  that  is ,  fo r  a = 0. 

D i s r e g a r d i n g  the p a r a m e t e r s  a and r in (1.3), we obtain the solut ion of  these  equat ions  in the f o r m  

dZ~ [ r , [  d l n K  
- -  i k ' dZ  v" = i (r / x) (~ -~ p) ~, .t_ t Li-~-0) ~p T U 0  k, 

4 

-- (i+o' : ~pT uo -~dln/( 3s co'-k uOk'k, l~Z:~_ ]_~ 3' (d+ uok'i_p k')dZ:,], 

In the gene ra l  c a se ,  the computa t ions  which a re  ba sed  on the r e l a t i ons  (1.4) a re  v e r y  complex  and 
c u m b e r s o m e .  One can eas i ly  see,  however ,  that  two much  s i m p l e r  c a s e s  a r e  feas ib le :  1) ~ ~ 1, when 
r / ~  << 1, and 2) ~ ( ((  1, such that  r / ~  >> 1. To be speci f ic ,  suspens ions  o r  emu l s ions  will  be c o n s i d e r e d  b e -  
low only in dr ipping  f luids when r/~< << 1. An independent  ana lys i s  is r e q u i r e d  fo r  the o the r  case ,which  is  
c h a r a c t e r i s t i c  fo r  su spens ions  of m a t t e r  in gas  with r not too smal l .  

F r o m  (1.4) one obtains  for  r/~<<< 1 the r e l a t ions  

i k ,dZ  v, 4 o' + uok' k' = T S k  '2 -~ : -~  k, 2 dZv, dZv' o)'+u0k' dZp (1.5) = l - - p  

' V d l n K  + . ( 1  + 4 ) r k ' ]  
dZ~ = I T  u0 T sk'2 dZ~ i -- p k '~ 

The c o r r e s p o n d i n g  e x p r e s s i o n s  fo r  d i m e n s i o n l e s s  s p e c t r a l  densiti 'es a r e  of  the f o r m  

�9 , d +uok' '~,~ (co', k') ~p,, ((o , k') = i -- p 

,. r d l a K  ( i _  4 .,.a,o)'-4-u0k' k~]tF~,,(~0,,k, ) ~:,~ (co', k ) =  L T  Uo + m ) 
/o)'  -[- uok' ~ k'*k'  ..o . , �9 ~,~(~o', k ' ) = ( ~ )  ---V--ro,~((o,k'), a,b=IIa~b~l I (1.6) 

�9 , = < ) ~o,~(co , k') [ ( g l n K 1  = 4 c/InK r -t- uok" 
L k T l  Uo * Uo -k I -4- T sk'~ dp t - -  

X uo*k'-kk'*uo (1 ~- 4 sk,~lr k '*k '~  , 
~'~ ~-. T /~---~---~--/ W~'F~,~(~ 

' , [ d l n K  ( ) ] ~o' tp~,~ (o~, ~') = L T  k ' ,  u o Jr- i -[- + sk 'a co' + uok' k' �9 k' -4- uok' tF ~ , (co', k') 
1 - -  p k '~ ( i  - -  p) k '~ ' 

' , 4 ~ ' + u o k '  k' ~-v~,~ (~o, k') = T sk'~'-V=-~ "F'~ o (d ,  k') 
k~g ,, 
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�9 , /~ '  + u , '  12 k ' ,  k' %,~ (~,, k' )  �9 _vp,o (~, k') = - ~  sk'~tt--y:-Hp ] - - V - -  

" + T  ] ~  
ql-Vp,~(CO , k ' ) -~ -  4 , , 2 [  d l n K  - ,  4 sk,,jco'l~_~u~k' k ' * k '  ( ~  k ' )  

The quantity ~2;,p(r k ')  can be r e p r e s e n t e d  as [1, 2] 

@ 
D'k'k '  $~,~ (k') (I)~,~ (c0', k ' )  = ~ Y (ko' - -  k ' )  

~F~,p(0)', k ' )  ~-- z~ M((0' ,k ')  ' k3 

t r D  to,2~ D' D 0o = <w% (1.7) M ( c o ' , k ' ) = c o  "~+  D ' k ' k ' - -  ~ ) ,  = u-~' - u~ - 

�9 = -TJ  > ,  ,<0">~ 
It  should be ment ioned that the express ion  for  k 0' in (1.7) is only valid for  the local ly  uni form sus -  

pensions  under  considera t ion .  In (1.7) D r e p r e s e n t s  the t ensor  of pseudoturbulent  pa r t i c l e  diffusion which 
was cons idered  in detail  in [2]; (w '2) is  the mean  square  of the i r  pulsat ion veloci ty .  The re la t ions  (1.6) 
and (1.7) enable one, of cour se ,  to compute va r ious  co r re l a t ion  functions of pseudoturbulence in the "equil ib-  
r i u m "  s ta te .  In con t r a s t  to the kinet ic  gas  theory  in which by equi l ibr ium one unders tands  the spat ia l ly  uni-  
f o r m  s ta t ionary  s ta te ,  he re  by equi l ibr ium s ta te  one unders tands ,  in general ,  a s ta te  in which the p a r t i c l e -  
distr ibution function f of ve loc i t ies  of the pseudoturbulent  pulsat ions has a "quasi -Maxwel l ian"  f o r m  (see 
Sec. 4). This  concept  is  explained in detail  below. It  is noted, however ,  that  both these  definitions of an 
equi l ibr ium a re  ident ical  within the f r a m e w o r k  of the Eu le r  approximat ion which i s  cons idered  here .  

An equi l ibr ium s ta te  of a suspens ion  can a lso  be fo rma l ly  defined as a s ta te  in which the re la t ions  
(1.7) a r e  val id for  the spec t r a l  densi ty of the r andom p r o c e s s  p '  and also f rom the express ion  (0 '2) = 
p2(1-p/p ,), which follows f r o m  it. 

2:. Equi l ibr ium Structure  of Suspens ions .  In our  cons idera t ions  only the ave r ages  of b ina ry  products  
of different  pseudoturbulent  quant i t ies  a re  requi red .  I t  i s  convenient  to d i rec t  the coordinate  axis x 1 in the 
di rect ion of the unit vec to r  n o which spec i f ies  the s y m m e t r y  axis of the pseudoturbulent  mot ions .  

1% In tens i ty  of pa r t i c l e  pulsat ions .  In tegra t ing @'ww(w', k ') ove r  all f requenc ies  w' and the ent i re  
wave s p a c e k '  and proceeding to d imens ionsa l  v a r i a b l e s  one obtains the following exp res s ions  for  the non- 
vanishing ave rages  (w i ' w j ' )  : 

4 , 2 -  i 8 . 16 9 k,4zk(l i + % ~ a ~ l  (w,") = - - ~ [ n g ( p ) : +  +n(p )  (:l +-K-sko )+ -K- ( i  +-'K'dc"9-1--~ "s ~ i j .  +7]-4--~x-,,o]j ug, (2.1) 

~r  ~ + ,ko,~ + -~"~o )~, + ~ y o ) , , 3  / i  ill 16 9- ,t. X/. i + 5'r ~ ~ <w;b <w3"> ----" 5 

The quantity ?/2 was cons ide red  in [2]; usual ly,  y,2~ 10-2_10-a; t h e r e f o r e f o r  s impl ic i ty  it  i s  a s sumed  
that  T ~0.  Adding up the exp re s s ions  (2.1) one obtains an. equat ion fo r  the unknown ~0- By solving it one 
obtains for  00 the expres s ion  

O0 ~ m 3 (4. __ p)'~ [ 1l~ (~') + 
169  ,4 - - ~  t ~ S ~ o  t ~ S ~ o  

(2.2) 

I t  i s  not difficult  to see  that 00 i n c r e a s e s  without bounds for  p ~ p ~  where  p~ is  the root  of the equation 

4~0, ( =  ~ Jr- 16 ) (2.3) t + rk0 '9 -~- -~- s~ko '~ = t 
9 (i 

The obtained d ivergence  r e s u l t s  f r o m  the fact  that col l is ion diss ipat ions  have been d i s r ega rded  by us; 
this c e a s e s  to be valid in the immed ia t e  p rox imi ty  to the densely packed s ta te .  I t  is  obvious,  the re fore ,  that  
the theory  developed he re  can anyway be val id fo r  p < p~ however ,  it will be seen  that p~ d i f fe rs  v e r y  sl ightly 
f r o m  p , .  
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The fo l lowing  a p p r o x i m a t i o n  w a s  u s e d  f o r  n u m e r i c a l  c a l c u l a t i o n s  in  [2]: 

J(l  _ p)-4.ss, p < P o  = 0.28 S ( p ) ~ ( l  - -  p).r 
K ( p ) ~  t 2 5 ~ ( 3 ( i _ o ) D _ L  ~ > p o  ' 

(2.4) 

Th i s  a p p r o x i m a t i o n  of  K(p) i s  s o m e w h a t  i n c o n v e n i e n t  in  tha t  the  s e c o n d  d e r i v a t i v e  of K(p) h a s  a d i s -  
con t inu i ty  at  the  po in t  p = P0; t h e r e f o r e ,  f o r  func t ions  of  p t h e r e  a p p e a r  c o r n e r  p o i n t s  f o r  p = P0 and in s o m e  
c a s e s  even  d i s c o n t i n u i t i e s .  T h e r e f o r e  by  us ing  the s a m e  e x p r e s s i o n  (2.4) fo r  S(p) we s h a l l  u s e  K{p) b e l o w  
in  the  f o r m  

2.2 6,38 (2.5) /~(p)= (l_p)s.d--i,2, n ( p ) =  
2,2-- i.2 (i --  p) ~.9 

A c o m p a r i s o n  w a s  m a d e  b e t w e e n  the v a l u e s  of K(p) in (2.4) and in (2.5) in the  p i n t e r v a l  f r o m  0 to 
p ,  =0 .60 :  

t~=o.io 0.20 0.30 0.4o 0.50 0.60 
K (2.4) = i .  6202 2.7787 5. i020 9.2593 i6.6667 3i. 2500 
K (2.5) ~- 1.7862 3.0021 4.9893 8.4780 i5.2214 30.i652 

It  c an  be  s e e n  tha t  the  func t ion  (2.5) p r o v i d e s  a good a p p r o x i m a t i o n  of  K{p) of (2.4) though i t  p o s s e s s -  

e s  con t inuous  d e r i v a t i v e s .  

The  c a l c u l a t i o n  of  the  r o o t  p~ of Eq. (2.3) fo r  p ,  = 0.60 y i e l d s  the  i n e q u a l i t i e s  0.599997 < p~ < 0.599998, 
t ha t  i s ,  p~ i s  a l m o s t  i d e n t i c a l  wi th  p , .  

In  F i g s .  1 and 2 the  e x p r e s s i o n s  (wl ' 2} /u  2 and Nw= (w2'~>/(w~ '2} as  func t ions  of p a r e  g iven  as  c o n -  
t inuous  c u r v e s .  T h e  d a s h e d  c u r v e s  c o r r e s p o n d  to the  func t ions  r e s u l t i n g  f r o m  an " i n v i s c o u s "  m o d e l  s =  0 
(see  [2]). Above  in  the  c a l c u l a t i o n s  of S(p) (2.4) and K(p) (2.5), w e h a v e u s e d  T ~0,  p ,  =0 .60 ,wh ich  we wi l l  
a l s o  u s e  be low:  

I t  i s  no t ed  tha t  the  o b t a i n e d  r e s u l t s  r e f e r  only- to s u s p e n s i o n s  of  s o l i d  p a r t i c l e s .  F o r  t r i c k l e s  o r  l i t t l e  
c a v i t i e s ,  d i f f e r e n t  r e p r e s e n t a t i o n s  m u s t  o b v i o u s l y  be  u s e d  f o r  S(p)  and K{p). 

2 ~ O the r  p s e u d o t u r b u l e n t  a v e r a g e s .  The  fo l lowing  e x p r e s s i o n s  a r e  ob t a ined  f r o m  {1.6) and (1=7): 

~ [n 4.(I § t+~/~ 0o)]~ 
. . . . .  ,t~r f i  1( . , , t + 5 ~  <v~w~)~(v~w3>=~\ +-~-Sko '+.`1 -~-i-4-~,,o 7 

Op' , \  10:zq)sko '~ (2 .6 )  
- -  " ~  P ,7 = ~ d*~Ku6a 

O'  
75 (l --  n) ~ ~ < ) d*~K~ 

dl[~Ku ~ 
I 

uo a~ p~u. 
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, ,  < < <~  ,> <v~v~>=<,v~'w/>[=<v(w/>= - -  v ~ ' > =  - w~ = 0 ,  ~ i  

A di rec t  use of the relat ions (1.5) yields also 

, d~' \ / ,  du(\ / ,d~j'\ /~,., d~j , \_ / .  ,, % , \  j ,d'~j'~ 
p T / = , , , p  -gi-/=%,v~ T / = \  , T / - - \ ~ , ,  T / = \ w ~  T / = O  

Differentiation with respec t  to t ime is ca r r i ed  out along a par t ic le  t ra jec tory  [1]. 

It is  not difficult to see that for  T ~0 the quantity Nv= (v2 '2 ) / (v i '2>~  1/3; and the functions (vl '2) /u  2 
and ( p ' v t ' ) / u  of p a re  as shown in Fig. 3 (curves 1 and 2, respectively).  The dashed line i l lus t ra tes  the 
f i r s t  of these quantities for s = 0. Other pseudoturbulent averages as functions of p are of approximately 
the same cha rac te r  and are  therefore  not shown. 

(2.7) 

3 ~ Average force  of the interphase interaction.  The average interact ion force  between phases was 
computed in [1]. Disregarding,  for  simplici ty,  the possible dependence of the coefficients } and 7? on the 
concentrat ion p, we wri te  down this force  pe r  single par t ic le  as 

t 

Fi= --%-~-+ ~tm~K*u-{-~cm ~-~7- F T ~-~ t=t" V~--V/ 

D 0 O 
~-T =-aT § w -~-, 

K* = K + <p'u'> dK + amK v' 
u- dp "-I- <P '~>  d - ~ '  U" = - -  W" 

The second t e r m  of (2.8) r epresen t s  the force  of viscous interphase interaction,whose magnitude dif- 
f e r s  considerably in a sys tem of chaotical ly moving par t ic les  f rom the magnitude charac te r i s t i c  i n  a sys -  
tem with relat ively s ta t ionary par t ic les .  F r o m  (2.6) and (2.8) the relation is obtained in the equilibrium 
state:  

4~I) _.p!l--pp ~K ( )] 
K* = kr:K, Zx = t -}- 3 (t -- p)' [ 2K dp' n (p) n (p) -t- l~- sk~ (2.9) 

The above introduced veloci ty of interphase slip u is not identical with the effective velocity u* in the 
intervals  between the par t ic les  determined by the full relat ive flow Q of the fluid phase.  Indeed, 

4nO (2. I0) 
Q =( i -p )~*- -~( l -p )u -  <P'PI'>, ~* ~-'}vu~, )~u~l 9(i-p)S 

In experiments the force of viscous interaction is usuaIIy expressed either by Q or in terms of u*, 
for example, FI=~ mflKi(p)u*. One then obtains from (2.9) and (2.10) 

/iT* ---- (s (2.11) 

In Eq. (2.11) the coefficient indicates what portion of the layer  hydraulic res i s tance  is taken by an 
equivalent in poros i ty  layer  of par t ic les  which pe r fo rm a full pseudoturbulent motion. 

In Fig. 4 the quantity X K is shown as a function of p for  s s 0  or  s =0 (dashed line). The corresponding 
curves  for XK/A u a re  only slightly above the curves  for  2, K. It is  not difficult to see that XK and hK/Ptu are  
always less  than unity. 

The la t ter  enables one to explain quite simply the phenomenon known as "the effect of lower r e s i s t -  
ante  of a pseudoliquid layer"  (see, for example, [3-6]). Endeavors have repeatedly been made to explain 
this phenomenon, which is important  in prac t ice  and which is usually connected with the observed weak c i r -  
culation of par t ic les  in the l ayer  [7, 81. The role  of fluctuations of poros i ty  s = 1 -  p of the l a y e r  in the lower-  
ing of its hydraul ic  res i s tance  was apparently mentioned for  the f i r s t  t ime in [6, 9]; an explanation s imi la r  
to the one given above can also be found in [10]. 

It is  noted that the relat ions (2.9)-(2.11) r e fe r  to a sys tem in equilibrium state with pseudoturbulence 
fully developed. In actual sys tems  a considerable  effect of the flow boundaries and in par t icular  of the in- 
ternal  circuIat ion of phases on the effective hydraulic res i s tance  must  obviously be expected. 

606 



O..f az a ~ , / "k 

t / " 

,o-' t / I 

zoq I f o.z 
0 B$ o.8 o 0.$ 0.6 

Fig. 3 Fig. 4 

The analysis of the resul ts  obtained in 1~ ~ shows that good resul ts  are  also obtained for suspen-  
sions of moderate  concentrat ion if the simplified model s = 0 is used. This model differs considerably f rom 
that of s s0  only for  very  la rge  p. It is also noted that the anisotropy degree of pseudoturbulent motions 
rapidly diminishes with increas ing  p. 

In fact,  an inc rease  in the pseudoturbulent averages  when p ~ p ~  takes place only in the region of 
p > 0.58 and is not shown in Figs.  1-3. 

3. Non-equil ibrium Structure of Suspensions and Dynamic Equations. The relat ions obtained in Sec. 2 
cha rac te r i ze  pseudoturbulence of suspensions away f rom the sur faces  bounding its motion, for example, of 
the walls, grids,  f ree  surfaces ,  etc.,  under the assumption that express ions  (1.7) are  valid. In fact, the 
boundaries  of flow as well as its nonstat ionari ty or  lack of uniformity can obviously have a considerable  effect 
on pseudoturbulence intensity and infringe, in par t icular ,  (1.7). For  example, rigid walls contribute to the 
damping of pseudoturbulent pulsations; grids let through liquid phase but not solid par t ic les .  Depending on 
the degree of nonuniformity in the fluid flow the grids can ei ther  weaken or  strengthen the pseudoturbulence 
nea r  a grid. This effect may in a number  of cases  extend to a considerable distance f rom the boundary. 

An attempt was made in [10] to allow for  this "nonuniformity" by assuming that it has no adverse  
effect on the relat ion (1.7), that is, on the magnitude of fluctuations in suspension concentrat ion,  tn this 
case the equations for  var ious  pseudoturbulent averages and in par t icu lar  for  pulsation energies  of phases 
in different direct ions are  essent ial ly  obtained in the same manner  as the equations for cor re la t ion  func- 
tions in s tat is t ical  mechanics  of turbulence.  Also different averages may depend on the coordinates  and on 
t ime in quite different manner.  

Here another, much s impler  model will be considered whose formulat ion does not need any additional 
assumptions;  namely,  one takes into account that in [1] Eqs. (1.1) were obtained after averaging over  At>> r ,  
where T is a cha rac te r i s t i c  least  time pseudoturbulence scale which is identical with the t ime of internal 
interact ions in the sys tem and resul ts  in establishing local equilibrium state; the lat ter  is s imi la r  in a 
sense to the state of molecular  chaos in nonuniform and nonstat ionary gas flow (see also the discussion in 
[10]). One can therefore  employ Eq. (1.1) not only in the analysis of equilibrium pseudoturbulence but also 
of the local equil ibrium pseudoturbulence; only the lat ter  will be considered below. 

As before ,Eqs.  (1.1) permi t  to express  all spect ra l  measures  in t e rms  of a single one; these expres -  
sions have the same fo rm in a nonequitibrium state as in an equilibrium state.  Therefore  if one has a non- 
equil ibrium state (w '2} = 0, then for any pseudoturbulent var iables  in this state one has 

(a 'b ' )  = (0 / 0o) (a'b'}o (3.1) 

Above and also everywhere  below, the subscr ipt  zero  re fe rs  to the quantities which correspond to the 
equilibrium state and which were  computed in Sec. 2. In par t icular ,  it follows c lear ly  f rom (3.1) that the 
ra t ios  such as ( a ' b ' } / ( c ' b ' }  are  the same in an equilibrium as well as in a corresponding nonequilibrium 
state. Much advantage is taken of this fact in our fur ther  considerat ions.  

Thus the problem of describing a nonequilibrium (but locally in equilibrium) pseudoturbulence reduces  
in fact to an additional equation for single s ca l a r  quantity 0. This equation is considered in Sec. 4. 
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Using the resul ts  of [1], one can represen t  dynamic equations in the form 

0 Op 0 
+ ~--  ( o w )  = o ,  at or ( ( i  - o)  v q- q)  = o ,  q = - ; o ' v ' >  

( o  , o ) ~ P P(P) dsp(w' ,w '>  d~p ~ - - ~ w  ~-  w =  or q--~oFi+d~pq'  = 

- -  Or Or q- P~ "-~ S e  q- <p-2) ~ e - -  

o~,, o~,j 2 ovzl I 
e =  ~ ax i 3 6iJo-~t ' P(O=dx [ ( l - -p )  ( v ' , v ' )  ~ - q , v  ~ v , q I  

When writ ing out (3.2), the identity (p ' e ' )  -= 0 has been taken into account; it follows directly f rom (1.5). 
Ignoring the fact that the coefficients ~ and ~1 depend on p one obtains the relat ions (2.8) for F i. It is em-  
phasized again that the pseudoturbulent quantities appearing in (3.2) are not, in general ,  identical with their  
equilibrium values determined previously but should be computed according to (3.1). 

4. Equilibrium Distribution Function and Trans fe r  Equation of Pseudoturbulent Energy of Par t ic les .  
For  a sys tem of suspended par t ic les  a kinetic equation was formulated in [1]. In the case under considera-  
tion it can be writ ten as 

, + + "  o,~ + . , ,  

= - - ~  ~ -  , A : B = A u B j i  (4.1) 

In the above F i "  are  fluctuations in the interaction forces  between the par t ic les  and the fluid phase 
which are averaged in accordance with conditional distributions using the method in [1]; A is an unknown 
tensor  which descr ibes  the diffusion in the velocity space. The collision t e rm on the r ight-hand side of (4.1) 
has been omitted in view of the fact that direct  coll isions of par t ic les  have been disregarded by us. 

Employing the relat ions (2.6) and (2.7) as well as the general  method in [1], we obtain the following 
express ions  after  calculations:  

�9 W" dK S" F: =,,,,,13[K(.~,. +._..,.) + ~ ,., ~ ,~]  

<vi'wi'> , <p'w~'>' (4.2) 
SP,1 ~ USP,1 ~ U ~ 1 s u , l t =  sv,~i~ 1, sv,ii = <u:~> , 

8 - v p  ' i i  = dl~K <wi'~) = dl~K <wi7% - -  lP/ 

Here no summation over  i is ca r r i ed  out; for simplicity,  one ignores  the fact that ~ and ~7 are  func- 
tions of p. 
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I t  is  not difficult to see  that the ra t ios  of the ave rages  of products  of the pseudoturbulent  quanti t ies  
in nonequi l ibr ium and equi l ibr ium s ta tes ,  in t roduced in (4.2), a re  identical  (see also Sec. 3), that is,  they 
are  independent of 0 and can be r ega rded  as known functions of dynamic va r i ab le s .  The quanti t ies  Sv, ll, 
Sv,22, and sp,1 as functions of p, ca lcula ted in accordance  with the r e su l t s  of Sec. 2 are  shown in Fig. 5 
(curves 1, 2, 3, r espec t ive ly) .  The quanti t ies  s'-~Tp,u and s'-Vp,22 as functions of p a re  given by cu rves  1 
and 2 of Fig. 6. The dashed curves  in Fig.  5 co r r e spond  to the inviscid model  s=  0. 

The t enso r  A in (4.1) can eas i ly  be de te rmined  by p rocedures  descr ibed  in [1]; namely,  one cons iders  
the dis t r ibut ion function of pa r t i c l e s  in the equi l ibr ium s ta te  f(0) when Eq. (4.1) together  with (4.2) becomes  

'Ow' g + -%- + c~w' + (cl - -  c~) wVuo #o) A o �9 = - ~  : ~ I C~) 
dK 

s~, 1] (4.3) 

c~ - c ,  = ~ K  (s~,, ~ - s'_vp ' ~ ) 

In the above cj a re  some known functions of the dynamic va r i ab le s .  However ,  in view of the axial 
s y m m e t r y  of the pseudoturbulence  it  can be a s sumed  at once that the t enso r  A is diagonal with the e igen-  
values  A1, A2= A3; m o r e o v e r ,  a solution of (4.3) is sought in the quas i -Maxwel l ian  fo rm 

- [ B1B~Ba ~ t l j  
rio) = ,~ ~___~__} exp ( - -  E Bjwj '~) ,  B s  ~-  B s  (4.4) 

where  n is a countable concentra t ion of pa r t i c l e s  in the suspension.  

By inser t ing  (4.4) in (4.3) we a r r i v e  at the equations 

F. c i m 
' g + ~ - - 0 ,  B j =  (]---- i ,2 ,3)  (4.5) 

m - -  2 A j ,  

The f i r s t  of the above equations is  identical  with the conserva t ion  equation of the impulse  of the d is -  
pe r s ion  phase  (3.2) r ega rded  as a continuous medium in the equi l ibr ium state .  

Computing fo rm a l l y  (wi'2> of (4.4) and (4.5),the following re la t ions  a re  obtained: 

Ai �9 ~. 
--A-=-c~<w?>O, t~---3-A =C0o,,~ c= -- ~ c y j ,  B j =  2%00 

i t r  ----- Ma (4.6) 
M~ -- i + 2Nw ' M~ ~ ~ ~ 2Nzo 

AS it was said before,  the quant i t ies  (wi'2>0, 0 0 and the coeff icients  cj, Mj may  be r ega rded  as known 
functions of the dynamic va r i ab le s .  T h e r e f o r e  the re la t ions  (4.6) de te rmine  finally the kinet ic  equation (4.1) 
and the equ i l ib r ium-d i s t r ibu t ion  function. 

Using f ami l i a r  anoroach, the following conserva t ion  equation for  the quantity 0 is obtained f rom (4.1): 
0 0 ~ 0w a% 2 p(p) 0 tr A 

4 3 (4.7) 
q0 = % ~ w ' ~ w ' f d w  ", ~o = ~ -  g a  

I f  the equation is  mult ipl ied by ~/2m, then it obviously becomes  the t r a n s f e r  equation of the pseudo-  
turbulent  energy  of pa r t i c les ,  which is s i m i l a r  to the heat -conduct ion equation. Then the quantity 1/2mq0 
r e p r e s e n t s  the pseudoturbulent  flow of the energy.  

Using (4.6) we wri te  (4.7) in a different  form,  namely ,  

ow 0% 
(-~-.w) = 2cp (0o-- O) (4.8) 

Equations (4.8) and (3.2) r e p r e s e n t  a comple te  s y s t e m  of equations which de te rmine  the average  mo-  
tion of suspension in the continuous approximat ion.  All the c h a r a c t e r i s t i c s  of the pseudoturbulence  which 
appear  in these  equations a re  de te rmined  in t e r m s  of 0 and of the dynamic va r i ab l e s  in accordance  with 
(3.1) and the r e su l t s  of Sec. 2. The quantity q0 is  the only exception and can be computed only if the dis-  
t r ibut ion function under nonequi l ibr ium conditions is  known. 
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The solution f of Eq. (4.1) and the cor responding  express ion  for  q 0 can be sought fo rmal ly  in the f o r m  
of a power  ser ies :  

f = ~, 1~, ,  q, = ~ q ~  (4.9) 

in which e denotes a smal l  quantity of the o rde r  of the ra t io  of the pseudoturbulence sca le  to the sca le  of 
the cor responding  average  motion.  

As in (4.9), the zero th  t e r m  in the expansion o f f  in powers  of e in the Euler  approximat ion cons idered  
by us he re  is  s imply  identical  with the function f(0) in (4.4); the cor responding  t e r m  q0 (0) in the power  s e r i e s  
for  q 0 vanishes  identical ly.  The next t e r m  in the expansion of q0 is  obviously of the o rde r  of e and need 
not t he re fo re  be taken into account in the Euler  approximat ion.  Thus in Eq. (4.8) one should adopt q0 = 0. 

In all subsequent  approximat ions  the individual coeff icients  f ( r )  in (4.9) also depend on e;  this is due 
to the p r e s e n c e  of de r iva t ives  of dynamic v a r i a b l e s  in the comple te  s tochast ic  equations of [ 1], resu l t ing  in 
the dependence on p of all c h a r a c t e r i s t i c s  of the equi l ibr ium pseudoturbulence and all components  of the 
t ensor  A in the kinet ic  equation (4.1). It  can be seen  that for  such approximat ions  fu r the r  t e r m s  of the s e r i e s  
(4.9) mus t  be calcula ted up to the index r de te rmined  by the o rde r  of approximat ion.  By analogy with the 
kinet ic  theory  of ga se s  and hydrodynamic  approximat ions  of the f i r s t  or  second o r d e r s  in e it s e e m  ap- 
p rop r i a t e  to call  them Navie r -S tokes  and Barnet t  hydrodynamic  approximat ions  for  suspensions .  

It  should be mentioned that the solutions 0 e i ther  of  Eqs. (4.7) or  (4.8) are ,  as can eas i ly  be seen, 
s table  only if c > 0. 

Thus, the following nonvanishing c h a r a c t e r i s t i c s  of the equi l ibr ium pseudoturbulence appear  in Eqs. 
(4.8) and (3.2), which de te rmine  the motion of the suspension in Euler  approximat ion:  

P!~) ~ (wi 'w~')  p, (v t 'v j")  (l - -  p), ql~.r, c (4.10) 
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