LOCALLY UNIFORM NO-COLLISION SUSPENSIONS
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Pseudoturbulent motions of phases are considered as well as the internal structure of mono-
dispersional locally uniform suspension of particles in a liquid when the derivatives of the
dynamic variables which describe the mean flow of the suspension are ignored. One assumes
that the number of collision dissipations, which expresses the ratio of the dissipation force
due to acceleration of the fluid phase in the case of stepwise change in the velocities of the
colliding particles to the forces of viscous interaction is small. Dynamic equations which de-
termine the motion of the suspension in its continuous approximation and the balance equation
of the pseudoturbulent energy of the particles are obtained with an approximation which is
similar to the Euler approximation in the hydrodynamics of a single-phase medium.

1. Spectral Measures of Pseudoturbulent Random Processes. In [1] the stochastic equations were
obtained for the pseudoturbulent pulsations of the volume concentration of the suspension p!, the pressure
p!, velocities of the fluid v ! and the particlew', and the resulting algebraic equations for spectral measures
of the random functions. It is our aim to obtain a complete system of equations which determine the mean
motion of the suspension in the "Euler approximation,” that is, with an accuracy up to the terms of zero
order as regards the ratio of the scales of pseudoturbulence to the corresponding scales of the mean motion,
To this end, the equations for the spectral measures are written neglecting the derivatives of the dynamic
variables:
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= r=g(m) s=p et (5]

The notation used in [1, 2] was adopted, though the symbol ( ) in the notation for dynamic variables
was omitted. In (1.1) a representation was employed for the interphase interaction force which is valid for
R% 1,where R=2qu/v, is the Reynolds number, Moreover, it is assumed below that the flow is locally uni-
form in the sense that in it large particle aggregates are not formed, or cavities filled by the dispersion
medium, ete.

Dimensionless variables are now introduced as in [2] by using the formulas

daz az az '
Ay = E, A = Ay =g, o=, K=k (1-2)
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The following dimensionless equations are obtained from (1.1) and (1.2) after transformations:
(@' 4 uk)dZ, — (1 —p)k'dZ,’ =0 (1.3)
i T o'dZ, = —ik'dZ, + [1 +irte’ +7%q(1 L isigno) Vr'ﬁ)'“i]
% (dZy' — dZ.,") + ““K w,dZ, — dZ,’

0 (i o+ rx) dZ, + [ir (1 — p) (0 + wok’) + sk'?] dZ," = — ik'dZ,’ — Y5k’ (k'dZ,’)
_ g _u _ 2 8 R 2 ua _ £
K= W= S=gps T =gy, <h =gy

For w'=0 Eqgs. (1.3) reduce to those given in [2].

The parameter @ in (1,3) characterizes the ratio of dissipative forces due to acceleration of the addi~
tional fluid masses in the case of stepwise changes in the particle velocities at the time of the collisions
to the force of viscous interaction between the phases of the suspension [1]. If the concentration g of the
suspension is not too close to the concentration py of the layer of particles in a densely packed state, one
can consider the "number of collision dissipations™" @ as small (see the discussion in [2]). Below the sus-
pension is considered only when direct particle collisions are disregarded, that is, for o =0,

Disregarding the parameters & and r in (1.3), we obtain the solution of these equations in the form
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In the general case, the computations which are based on the relations (1.4) are very complex and
cumbersome. One can easily see, however, that two much simpler cases are feasible: 1) » 31, when
r/n <1, and 2) n ({(1, such that r/»>>1. To be specific, suspensions or emulsions will be considered be-
low only in dripping fluids when r/% < 1. An independent analysis is required for the other case,which is
characteristic for suspensions of matter in gas with r not too small.

From (1.4) one obtains for r/n < 1 the relations

— ik'dZ, = 4 sk K gy gy o @k K

-~ 1= 77 9% (1.5)
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The corresponding expressions for dimensionless spectral densities are of the form
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The quantity ‘P",p (o', k'} can be represented as [1, 2]
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It should be mentioned that the expression for k,' in (1.7) is only valid for the locally uniform sus-
pensions under consideration. In (1.7) D represents the tensor of pseudoturbulent particle diffusion which
was considered in detail in [2]; (w'?) is the mean square of their pulsation velocity. The relations (1.6)
and (1.7) enable one, of course, to compute various correlation functions of pseudoturbulence in the "equilib-
rium?" state. In contrast to the kinetic gas theory in which by equilibrium one understands the spatially uni-
form stationary state, here by equilibrium state one understands, in general, a state in which the particle-
distribution function f of velocities of the pseudoturbulent pulsations has a "quasi~Maxwellian” form (see
Sec. 4). This concept is explained in detail below, It is noted, however, that both these definitions of an
equilibrium are identical within the framework of the Euler approximation which is considered here.

An equilibrium state of a suspension can also be formally defined as a state in which the relations
(1.7) are valid for the spectral density of the random process p' and also from the expression (p'?) =
p*(1~p/p ) which follows from it.

2, Equilibrium Structure of Suspensions. In our considerations only the averages of binary products
of different pseudoturbulent quantities are required. It is convenient to direct the coordinate axis x, in the
direction of the unit vector u, which specifies the symmetry axis of the pseudoturbulent motions.

1°. Intensity of particle pulsations. Integrating ¥'ww(«, k') over all frequencies ' and the entire
wave spacek' and proceeding to dimensionsal variables one obtains the following expressions for the non~
vanishing averages (w;'wj'):
» B 4D -, 2 . 4 AR , p 1437
o> 2ot Fa0 (1 T (=% PR

dInK

1= D>0 n(p)= (1 —p) —5-

. 4n® 7 19 14- 572
(wy'?) = (wy'?) = Bi= p)z(l + = sk02+_2_1_szk04)(1 +m“90)u2

The quantity y* was considered in [2]; usually, y 25 107%-1073; thereforefor simplicity it is assumed
that y ~0. Adding up the expressions (2.1) one obtains an: equation for the unknown 8;. By solving it one
obtains for 8, the expression

eo - Tﬁigaf’[’lz (p) + ._g— " (P)(i + _4— Skom) + ”1— (1 + "§* .‘)‘krj‘2 (2.2)
+ 3850 [t — g (1 SRR O

It is not difficult to see that 8, increases without bounds for p ~p°, where p° is the root of the equation
4nd " 16 27 74 ) 2 . 3
-9-'(-1”—9—)2— (i + Tko l— S k 1 ( )

The obtained divergence results from the fact that collision dissipations have been disregarded by us;
this ceases to be valid in the immediate proximity to the densely packed state. It is obvious, therefore, that
the theory developed here can anyway be valid for p<p°; however, it will be seen that p° differs very slightly
from px.
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The following approximation was used for numerical calculations in [2]
K (1 —p)ys8, p<po=0.28
)= Y250 (3(1 —

_ , S(py=(1—py®* :
PP p>00 0 ,
This approximation of K{p) is somewhat inconvenient in that the second derivative of K(o) has a dis~
continuity at the point p=py; therefore, for functions of p there appear corner points for p=p; and in some
cases even discontinuities.
in the form

Therefore by using the same expression (2.4) for S(p) we shall use K{p) below

_ 22 . 638 2.5
ﬁ(@)wm‘—i»zv n{p) = TR 2-5)
A comparison was made between the values of K{p) in (2.4) and in (2.5) in the p interval from 0 to

px =0.60¢

p=0.10 (.20 0.30 0.40 0.50
K(2.4)=1.6202 2.7787 5,4020  9,2593
K(2.5)=1.7862  3.002

0.60
4,9893

16,6667 31,2500
8.4780  15.2214

30,4852
es continuous derivatives

It can be seen that the function (2.5) provides a good approximation of K{p} of (2.4) though it possess-
that is, p° is almost identical with p«

The calculation of the root p° of Eq. (2.3} for p4x =0.60 yields the inequalities 0.599997 < p° < 0.599998
In Figs. 1 and 2 the expressions (w;'?/u? and Ny = (w,'%/ (w,'?) as functions of p are given as con-
tinuous curves

(see [2]). i i

also use below:

The dashed curves correspond to the functions resulting from an "inviscous" model s=0
Above in the calculations of S(p) (2.4) and K(p) (2.5}, we have used vy ~0, px =0.60,which we will

It is noted that the obtained results refer only to suspensions of solid particles
cavities, different representations must obviously be used for S{p) and K(p)
2°,

‘ %/ 7%
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For trickles or little
Other pseudoturbulent averages. The following expressions are obtained from (1.6) and (1.7)
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A direct use of the relations (1.5) yields also

G =G = % DS = o B = 2.7)

Differentiation with respect to time is carried out along a particle trajectory [1].

It is not difficult to see that for y ~0 the quantity Ny = (v,'® /(v,"%)~ 4 and the functions (v,'2)/u?
and (p'v,')/u of p are as shown in Fig. 3 (curves 1 and 2 respectively). The dashed line illustrates the
first of these quantities for s=0. Other pseudoturbulent averages as functions of p are of approximately
the same character and are therefore not shown.

3°. Average force of the interphase jnteraction. The average interaction force between phases was
computed in [1]. Disregarding, for simplicity, the possible dependence of the coefficients £ and 7 on the
concentration p, we write down this force per single particle as

t
9 Du D 14
Fi=—g, '3_:{1 + wmBK*u -+ um (Eﬁ + 7 S nTut lt-=f’ W:—t-') 2.8)
00
D a a
o= TV a

Wy dE . 4, .. &K
b — e 2 — —_—
K* =K + ” dp+2< )dpe,u v —w

The second term of (2.8) represents the force of viscous interphase interaction,whose magnitude dif-
fers considerably in a system of chaotically moving particles from the magnitude characteristic in a sys-
tem with relatively stationary particles. From (2.6) and (2.8) the relation is obtained in the equilibrium
state:

—p) &K 4 ,
K=, gt [P S ) () + k) 2

The above introduced velocity of interphase slip u is not identical with the effective velocity u* in the
intervals between the particles determined by the full relative flow Q of the fluid phase. Indeed,

. r 4@
Q=(1—p)u*=(1—p)u——(pvl), u*=7"uus }\fu=1.—-§—(—1—ic:-p—); (2'10)

In experiments the force of viscous interaction is usually expressed either by Q or in terms of u*,
for example, Fi=n mpBK;{p)u*. One then obtains from (2.9} and (2.10)

K* = (Ag] M) Ky 2.11)

In Eq. (2.11) the coefficient indicates what portion of the layer hydraulic resistance is taken by an
equivalent in porosity layer of particles which perform a full pseudoturbulent motion.

In Fig. 4 the quantity ax is shown as a function of p for s#0 or s=0 (dashed line). The corresponding
curves for A /Ay are only slightly above the curves for Ag. It is not difficult to see that Ax and Ag/A, are
always less than unity,

The latter enables one to explain quite simply the phenomenon known as "the effect of lower resist-
ance of a pseudoliquid layer" (see, for example, [3~6]). Endeavors have repeatedly been made to explain
this phenomenon,which is important in practice and which is usually connected with the observed weak cir-
culation of particles in the layer [7, 8]. The role of fluctuations of porosity € =1~ p of the layer in the lower-
ing of its hydraulic resistance was apparently mentioned for the first time in [6, 9]; an explanation similar
to the one given above can also be found in [10].

It is noted that the relations (2.9)-(2.11) refer to a system in equilibrium state with pseudoturbulence
fully developed. In actual systems a considerable effect of the flow boundaries and in particular of the in-
ternal circulation of phases on the effective hydraulic resistance must obviously be expected,
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The analysis of the results obtained in 1°~3° shows that good results are also obtained for suspen-
sions of moderate concentration if the simplified model s= 0 is used. This model differs considerably from

that of s #0 only for very large p. It is also noted that the anisotropy degree of pseudoturbulent motions
rapidly diminishes with increasing p.

In fact, an increase in the pseudoturbulent averages when p —p° takes place only in the region of
o> 0,58 and is not shown in Figs. 1-3. ‘

3. Non-equilibrium Structure of Suspensions and Dynamic Equations. The relations obfained in Sec, 2
characterize pseudoturbulence of suspensions away from the surfaces bounding its motion, for example, of
the walls, grids, free surfaces, ete., under the assumption that expressions (1.7) are valid, In fact, the
boundaries of flow as well as itsnonstationarity or lack of uniformity can obviously have a considerable effect
on pseudoturbulence intensity and infringe, in particular, (1.7). For example, rigid walls contribute to the
damping of pseudoturbulent pulsations; grids let through liguid phase but not solid particles. Depending on
the degree of nonuniformity in the fluid flow the grids can either weaken or strengthen the pseudoturbulence
near a grid, This effect may in a number of cases extend to a considerable distance from the boundary.

An attempt was made in [10] to allow for this "nonuniformify" by assuming that it has no adverse
effect on the relation (1,7), that is, on the magnitude of fluctuations in suspension concentration. In this
cage the equations for various pseudoturbulent averages and in particular for pulsation energies of phases
in different directions are essentially obtained in the same manner as the equations for correlation func~

tions in statistical mechanics of turbulence. Also different averages may depend on the coordinates and on
time in quite different manner.

Here another, much simpler model will be considered whose formulation does not need any additional
assumptions; namely, one takes into account that in [1] Egs. (1.1) were obtained after averaging over At> 7,
where 7 is a characteristic least time pseudoturbulence scale which is identical with the time of internal
interactions in the system and results in establishing local equilibrium state; the latter is similar in a
sense to the state of molecular chaos in nonuniform and nonstationary gas flow (see also the discussion in

[10]). One can therefore employ Eqg. (1.1) not only in the analysis of equilibrium pseudoturbulence but also
of the local equilibrium pseudoturbulence; only the latter will be considered below.

As before,Eqs. (1.1) permit to express all spectral measures in terms of a single one; these expres-
sions have the same form in a nonequilibrium state as in an equilibrium state. Therefore if one has a non~-
equilibrium state (w'?) = ¢, then for any pseudoturbulent variables in this state one has

@b == (8/8,) <a’d"D 6.1

Above and also everywhere below, the subsecript zero refers to the quantities which correspond to the
equilibrium state and which were computed in Sec. 2. In particular, it follows clearly from (3.1) that the

ratios such as (a'b'} /{c¢'b'} are the same in an equilibrium as well as in a corresponding nonequilibrium
state, Much advantage is taken of this fact in our further considerations.

Thus the problem of describing a nonequilibrium (but locally in equilibrium) pseudoturbulence reduces
in fact to an additional equation for single scalar quantity #. This equation is considered in Sec, 4.
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Using the results of [1], one can represent dynamic equations in the form

"”’+a,<pw)=0, O (@ —pVi=0, g=—<(pv'>

dzp(%%W%)W=——a—g:i)+%oFi+dgpq, P® = dyp{w + W)
&3 (L —p) ¥ + 2 (@ —p)vev) + 3] (3.2)
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PO =dy [(1—p) (V¥ £ qav EVaq)

When writing out (3.2), the identity (p'e') =0 has been taken into account; it follows directly from (1.5).
Ignoring the fact that the coefficients £ and  depend on p one obtains the relations (2.8) for F;. Itis em-
phasized again that the pseudoturbulent quantities appearing in (3.2) are not, in general, identical with their
equilibrium values determined previously but should be computed according to (3.1).

4. Equilibrium Distribution Function and Transfer Equation of Pseudoturbulent Energy of Particles.
For a system of suspended particles a kinetic equation was formulated in {1]. In the case under considera~
tion it can be written as

(o )t S el(a+ T — fkw )w) ] = (e w): (Zaw)

A a 0
= (W W) A:B = 4,B; .1

In the above F;'' are fluctuations in the interaction forces between the particles and the fluid phase
which are averaged in accordance with conditional distributions using the method in [1]; A is an unknown
tensor which describes the diffusion in the velocity space. The collision term on the right-hand side of (4.1)
has been omitted in view of the fact that direct collisions of particles have been disregarded by us.

Employing the relations (2.6) and (2.7) as well as the general method in [1], we obtain the following
expressions after calculations:

U2 ’ r dK -
Fy = »mf [K (Susii + 8-y, 8) W' + =S Uh“o]

;' w,”> , <prwn’y’ 4.9
Sujp =Sp,u— 1, Spu= —(;—,,;—-—, o1 = USpy = U — e “.2)
, S_VP’ii 1
S = w
Vpr T diBK <w;'% dlBK <w;"?> < >

Here no summation over i is carried out; for simplicity, one ignores the fact that £ and n are func-
tions of p.
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It is not difficult to see that the ratios of the averages of products of the pseudoturbulent quantities
in nonequilibrium and equilibrium states, introduced in (4.2), are identical (see also Sec. 3), that is, they
are independent of ¢ and can be regarded as known functions of dynamic variables. The quantities Sy, 1t
Sv,99, and Sp,i 28 functions of p, calculated in accordance with the results of Sec. 2 are shown in Fig. 5
(curves 1, 2, 3, respectively), The quantities S'-Vp,u and s’_vp’gz as functions of p are given by curves 1
and 2 of Fig. 6. The dashed curves in Fig. 5 correspond to the inviscid model s=0,

The tensor A in (4.1) can easily be determined by procedures described in [1]; namely, one considers
the distribution function of particles in the equilibrium state f ) when Eq. (4.1) together with (4.2) becomes
3 F , R A a a
W{_(g + W (e —e)wy uo)f(“)] = :(87 * 37) j@
’ ik
6y =uf [K {Su, 1~ 8_pp, 1) + Y S,, 1] (4.3)
ey =g = UBK (54, 50 — S:_Vp, 2 )

In the above c; are some known functions of the dynamic variables. However, in view of the axial
symmetry of the pseudoturbulence it can be assumed at once that the tensor A is diagonal with the eigen-
values A;, A,= Ay moreover, a solution of (4.3) is sought in the quasi-Maxwellian form

1/'
00 = (22  oxp (— 3 By, By=B, .4

where n is a countable concentration of particles in the suspension.

By inserting (4.4) in (4.3) we arrive at the equations

F, .
gtE=0, Bj=—J1 (1=1,2,9) (4.5)
3

The first of the above equations is identical with the conservation equation of the impulse of the dis-
persion phase (3.2) regarded as a continuous medium in the equilibrium state.

Computing formally (w;'®) of (4.4) and (4.5),the following relations are obtained:

. L tr A 1
= awe, =y, e=—Ne;M;, Bj=gg;
o i Nw — 4
Mi= oy M= 1oy = Ms *.6)

As it was said before, the quantities (w;'*),, 0, and the coefficients ¢j, Mj may be regarded as known
functions of the dynamic variables. Therefore the relations (4.6) determine finally the kinetic equation (4.1)
and the equilibrium-distribution function.

Using familiar approach.the following conservation equation for the quantity @ is obtained from (4.1):

8 8 ow g A
(W +w F) (09) + peg}T: — 2¢00 + 2 po : (—% *w) =20 trm ,

d2
Go = Gy Sw’zw’fdw’, O = % na?
If the equation is multiplied by Y,m,then it obviously becomes the transfer equation of the pseudo-

turbulent energy of particles,which is similar to the heat-conduction equation. Then the quantity 1/zmqg
represents the pseudoturbulent flow of the energy.

4.7)

Using (4.6) we write (4.7) in a different form, namely,

oq 2
(5 + w3 00) + 005 + > P s (Law) = 20 (6, — ) (4.8)

Equations (4.8) and (3.2) represent a complete system of equations which determine the average mo-
tion of suspension in the continuous approximation. All the characteristics of the pseudoturbulence which
appear in these equations are determined in terms of § and of the dynamic variables in accordance with
(3.1) and the results of Sec. 2. The quantity 4y is the only exception and can be computed only if the dis~
tribution function under nonequilibrium conditions is known.



The solution f of Eq. (4.1) and the corresponding expression for q can be sought formally in the form
of a power series:

f= D f"%er, q,= Z q{er 4.9)

in which € denotes a small quantity of the order of the ratio of the pseudoturbulence scale to the scale of
the corresponding average motion.

As in (4.9), the zeroth term in the expansion of f in powers of € in the Euler approximation considered
by us here is simply identical with the function f 0) in (4.4); the corresponding term q, ©) in the power series
for q y vanishes identically. The next term in the expansion of q¢ is obviously of the order of £ and need
not therefore be taken into account in the Euler approximation. Thus in Eq. (4.8) one should adopt qg = 0.

In all subsequent approximations the individual coefficients f () in (4.9) also depend on &; this is due
to the presence of derivatives of dynamic variables in the complete stochastic equations of [1], resulting in
the dependence on p of all characteristics of the equilibrium pseudoturbulence and all components of the
tensor A in the kinetic equation (4.1). It can be seen that for such approximations further terms of the series
(4.9) must be calculated up to the index r determined by the order of approximation. By analogy with the
kinetic theory of gases and hydrodynamic approximations of the first or second orders in £ it seem ap-
propriate to call them Navier-Stokes and Barnett hydrodynamic approximations for suspensions.

1t should be mentioned that the solutions # either of Eqs. (4.7) or (4.8) are, as can easily be seen,
stable only if ¢ > 0.

Thus, the following nonvanishing characteristics of the equilibrium pseudoturbulence appear in Egs.
(4.8) and (3.2),which determine the motion of the suspension in Euler approximation:

PP~ (wwi'yp,  ovi’Y(1—p),  Gidk, € (4.10)
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